The energy associated with this motion is called the zero-point energy . 這個(gè)運(yùn)動(dòng)的能量叫做零點(diǎn)能。
It ' s cool , huh ? zero - point energy 很酷吧?是零點(diǎn)能
The second aspect : in zm model , under mean field approximation , the zero - point energy of vaccum is often neglected 第二個(gè)方面,在zmng中,在平均場(chǎng)近似下,真空零點(diǎn)能往往是被忽略的
Schematic diagram showing the relationship between the zero - point energy and molecular mass for hydrogen , deuterium and hd . ( image courtesy of mit ocw 示意圖說(shuō)明氫分子、氘分子、氫氘分子的零點(diǎn)能與分子量之關(guān)系(本圖由麻省理工學(xué)院開(kāi)放式課程網(wǎng)頁(yè)提供) 。
Introduction to wave mechanics : schroedinger ' s equation , wave functions , wave packets , probability amplitudes , stationary states , the heisenberg uncertainty principle , and zero - point energies 介紹波動(dòng)力學(xué):薛丁格方程式,波方程式,波包,或然率,穩(wěn)定態(tài),海森堡不確定原理以及零點(diǎn)能量。
Zero-point energy is the lowest possible energy that a quantum mechanical physical system may have; it is the energy of its ground state. All quantum mechanical systems undergo fluctuations even in their ground state and have an associated zero-point energy, a consequence of their wave-like nature.